Digitized 3D mesh segmentation based on curvature analysis

R. Bénière²

W. Puech¹

G. Subsol¹

¹LIRMM, CNRS, University of Montpellier, France ²C4W, Montpellier, France

silvere.gauthier@lirmm.fr

February 02, 2017

Introduction ●○○	Method overview	Experimental results	Conclusion and perspectives
Context			

Reverse Engineering

Study of an object to determine its functioning or manufacturing method.

 \Rightarrow Reconstruction of a 3D parametric model (combination of geometric primitives) from a discrete one (3D mesh).

[■] R. Bénière, G. Subsol, G. Gesquière, F. Le Breton, and W. Puech. A comprehensive process of reverse engineering from 3D meshes to CAD models. Computer-Aided Design, 45(11), 2013.

Introduction ●○○	Method overview	Experimental results	Conclusion and perspectives
Context			

Reverse Engineering

Study of an object to determine its functioning or manufacturing method.

 \Rightarrow Reconstruction of a 3D parametric model (combination of geometric primitives) from a discrete one (3D mesh).

Problem: how to define precisely primitive regions?

B. Bénière, G. Subsol, G. Gesquière, F. Le Breton, and W. Puech. A comprehensive process of reverse engineering from 3D meshes to CAD models. Computer-Aided Design, 45(11), 2013.

• **Solution:** segment the 3D mesh in homogeneous regions corresponding to the primitives.

Segmentation

Many methods exist but not efficient enough for our application.

A. Shamir. A survey on mesh segmentation techniques. Computer Graphics Forum, 27(6):1539-1556, 2008.

Introduction ○○●	Method overview	Experimental results	Conclusion and perspectives
Segmentation			

Primitives are separated by "edges".

 Idea: Extract object edges to delimit homogeneous regions by a method based on surface curvature (k₁, k₂, k_g, k_m).

G. Lavoué, F. Dupont, and A. Baskurt. A new CAD mesh segmentation method, based on curvature tensor analysis. Computer-Aided Design, 37: 975-987, 2004.

Table of contents

Curvature analysis

Curvature histogram

- Compute mean curvature at each vertex of the 3D mesh
- Normalize curvature values using the average edge length
- Construct a histogram using a Gaussian kernel estimation

Curvature analysis

Curvature analysis

Experimental results

Conclusion and perspectives

"Sharp" edge extraction

Region growing

• Retrieve homogeneous and "edge" regions by propagation

Take a triangle and assign a unique ID

Experimental results

Conclusion and perspectives

"Sharp" edge extraction

Region growing

• Retrieve homogeneous and "edge" regions by propagation

Propagate ID on its neighbors

Experimental results

Conclusion and perspectives

"Sharp" edge extraction

Region growing

• Retrieve homogeneous and "edge" regions by propagation

Propagate ID on its neighbors

Experimental results

Conclusion and perspectives

"Sharp" edge extraction

Region growing

• Retrieve homogeneous and "edge" regions by propagation

Until it reaches "edge" triangles

Experimental results

Conclusion and perspectives

"Sharp" edge extraction

Region growing

• Retrieve homogeneous and "edge" regions by propagation

Start again with a new triangle until all triangles are processed

Method overview

Experimental results

Conclusion and perspectives

"Sharp" edge extraction

Over-segmentation: small region merging

Merge small regions included in larger ones

Method overview

Experimental results

Conclusion and perspectives

"Sharp" edge extraction

Over-segmentation: small region merging

Merge small regions included in larger ones

Under-segmentation: bridge removal

• Separate regions connected by thin strips of triangles

Introduction	Method overview	Experimental results	Conclusion and perspectives
Recursivity			

- Start the process again on each region, with an updated histogram
- Stop when only one homogeneous region is found

Introduction	Method overview	Experimental results	Conclusion and perspectives
Recursivity			

- Start the process again on each region, with an updated histogram
- Stop when only one homogeneous region is found

Introduction	Method overview	Experimental results	Conclusion and perspectives
Recursivity			

- Start the process again on each region, with an updated histogram
- Stop when only one homogeneous region is found

Introduction 000	Method overview	Experimental results	Conclusion and perspectives
Recursivity			

- Start the process again on each region, with an updated histogram
- Stop when only one homogeneous region is found

Introduction	Method overview ○○○○○●○	Experimental results	Conclusion and perspectives
Recursivity			

- Start the process again on each region, with an updated histogram
- Stop when only one homogeneous region is found

- Compute an updated curvature histogram for each region
- Separate homogeneous regions by a multiple thresholding
- Apply our segmentation process at each step (without recursion)

- Compute an updated curvature histogram for each region
- Separate homogeneous regions by a multiple thresholding
- Apply our segmentation process at each step (without recursion)

- Compute an updated curvature histogram for each region
- Separate homogeneous regions by a multiple thresholding
- Apply our segmentation process at each step (without recursion)

- Compute an updated curvature histogram for each region
- Separate homogeneous regions by a multiple thresholding
- Apply our segmentation process at each step (without recursion)

- Compute an updated curvature histogram for each region
- Separate homogeneous regions by a multiple thresholding
- Apply our segmentation process at each step (without recursion)

Table of contents

Method overview

- 3 Experimental results
 - 4 Conclusion and perspectives

Method overview

Experimental results

Conclusion and perspectives

Experimental results

From 20,000 to 2,500,000 triangles — Different surface scanning devices — Heterogeneous noise

Experimental results

Conclusion and perspectives

Recursivity example

Method overview

Experimental results

Conclusion and perspectives

Back to context

Segmentation: 799 296 triangles - 16 seconds - 70 regions - 94.3% with only one primitive

Experimental results

Conclusion and perspectives

Back to context

Segmentation: 851 194 triangles - 13 seconds - 48 regions - 100% with only one primitive

Method overview

Experimental results

Conclusion and perspectives

Back to context

Segmentation: 195 853 triangles - 5 seconds - 72 regions - 100% with only one primitive

Table of contents

1 Introduction

- Method overview
- 3 Experimental results

Results

Segmentation:

- Fast: 10-30 seconds for 1 million triangles
- Adaptive: compute parameters from input data at each step
- Automatic: no user action

Results

Reverse engineering:

- Around 96% of obtained submeshes contain only one primitive
- Reduce computational cost (40 to 80%)
- Improve reconstruction accuracy (+50%)

Accuracy

Optimize some parameters, like bin number for histogram construction.

Extensibility

Adapt our approach for natural objects, for example to use it for medical image analysis.

Thank you Some questions?

silvere.gauthier@lirmm.fr

Silvère Gauthier, R. Bénière, W. Puech, G. Pouessel, G. Subsol, Digitized 3D mesh segmentation based on curvature analysis, 2017

